Abstract by Brayden Bekker

Personal Infomation

Presenter's Name

Brayden Bekker



Degree Level



Chandramouli Nyshadham
Matthias Rupp

Abstract Infomation


Physics and Astronomy

Faculty Advisor

Gus Hart


One Interatomic Potential for 10 Binary Alloys


Advances in fields from engineering to medicine demand the accurate prediction of new materials at an increased rate. The innumerable combination of materials and high computational cost of accurate predictions limit the ability to produce results at the necessary levels. The recently proposed Many-Body Tensor Representation (MBTR)(Huo, Haoyan, and Matthias Rupp. ``Unified Representation for Machine Learning of Molecules and Crystals." arXiv preprint arXiv:1704.06439 (2017).) interpolates the materials space to achieve accurate results at a fraction of the computational cost. In this talk, we present the application of MBTR for representing binary/ternary alloys and using machine learning to predict new materials at a faster rate. We show the ability of the MBTR method to meet the increasing demands for fast and accurate materials prediction.

*I would like to thank BYU physics and Astronomy for funding my research