BYU

Abstract by Wilson Redd

Personal Infomation


Presenter's Name

Wilson Redd

Co-Presenters

Spring Cullen

Degree Level

Undergraduate

Abstract Infomation


Department

Computer Science

Faculty Advisor

David Wingate

Title

But how do you detect a cancerous cell?

Abstract

Cervical cancer is a dangerous and prevalent disease throughout the world. In India, the situation for women is particularly severe. Cervical cancer accounts for 26% of cancer for women in India, with only 20% having been screened at least once in their lifetime; comparatively, 70% of American women see a gynecologist every few years.

 

In order to improve medical treatment of women in regions like India, our research focuses on increasing rates of early detection of cancerous cells from PAP-smear samples. Since roughly 90% of slides collected in India are non-cancerous, we are applying deep learning to visually examine and triage potentially cancerous slides, thereby enabling pathologists to spend more time examining abnormal slides.

 

In this presentation, we put forth a Cancerous MNIST dataset we have created to replicate slide conditions and outline the pipeline and machine learning algorithms we will be developing over the coming year.