BYU

Abstract by Kolby Nottingham

Personal Infomation


Presenter's Name

Kolby Nottingham

Co-Presenters

Allison Lambert
Max Robinson
Nick Walton
Jayden Milne

Degree Level

Undergraduate

Co-Authors

Max Robinson
Nick Walton
Jayden Milne
Allison Lambert

Abstract Infomation


Department

Computer Science

Faculty Advisor

David Wingate

Title

Holodeck: a High-Fidelity Simulator for Deep Reinforcement Learning

Abstract

Holodeck is a virtual environment powered by Unreal Engine focused on robotic control that allows agents to learn to act in a visually rich synthetic world. We created Holodeck with numerous worlds, robotic agents, tasks, and camera and other sensors that provide a testbed for reinforcement learning algorithms. Reinforcement learning is a method by which agents learn how to interact in an environment by receiving rewards for their actions. With current methods, this requires large amounts of experience, impractical and expensive in the real world. Virtual environments give agents the ability to quickly gain large amounts of experience. Robot control tasks focus on learning control policies that move a robotic agent through a world. Most popular control environments are visually simple and rely on joint and location sensors as opposed to Holodeck’s vision based sensors. Our work on Holodeck creates a unique framework for deep reinforcement learning with a focus on a visual state space.